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Abstract- In this paper, the effect of alternative food sources and transitive two different types of diseases in the ecological models,
specifically a prey-predator model, is proposed and studied. Both of the diseases transition in the same population, specifically in the
predators. The first one of which the SIS-epidemics is transmitted. The second one of which the Sl-epidemics is transmitted. The model is
characterized by a four of autonomous nonlinear differential equations with nonnegative parameters. All the model's equilibriums are
determined and the dynamic behaviors of the model near them are investigated. Finally, contains the numerical simulation investigation at

each equilibrium points
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1. INTRODUCTION:

Diseases in a prey-predator system have received significant
interest in resent years. It is well known that, in nature species
does not exist alone. In fact, any given habitat may contain
dozens or hundreds of species, some times thousands. Since
any species has at least the potential to interact with any other
species in its habitat, the possibility of spread of the disease in
a community rapidly becomes astronomical as the number of
infected species in the habitat increases. Therefore, it is more
of biological significance to study the effect of disease on the
dynamical behavior of interacting species

many researchers, especially in the last two decades,
have proposed and studied different prey-predator models in
the presence of disease in one of the species see for example
[1-13] and the references there in. In most previous studies, the
only means of transmission of disease is the direct contact
between individuals. However, many diseases are transmitted
in the species not only through contact, but also directly from
environment.
Elisa Elena et al [14] proposed prey-predator model two
diseases affect the prey. Predators are allowed to have other
food sources. Fabio Roman et al [15] proposed prey-predator
model containing two disease strains in the predator
population.

On contrast to all of the above studies, in this paper a
prey-predator model involving SIS and SI infectious diseases
in predator species is proposed and analyzed. It is assumed
that the predator population has external source of food. It is
assumed that both of the diseases spread within predator
population by contact between susceptible individuals and
infected individuals. Further, in this model, linear type of
functional response as well as linear incidence rate for
describing the transition both of disease are used.

2. MATHEMATICAL MODEL:
The basic prey-predator model is

ap =P(a—-bP)-cPN
o 1)
T = N(ecP-0)

where P(T) and N(T) represent the densities of prey and
predator species at time T respectively. Clearly the above
model is a simple Lotka-Volterra prey-predator model with
logistic growth rate for prey. The positive parameters
a,b,c,e and @ represent intrinsic growth rate, intra-specific

competition, attack rate, conversion rate and natural death
rate respectively [16].

We impose the following assumptions:

2.1 In the presence of first disease, SIS disease, the predator
population consists of two subclasses, namely, the susceptible
predator S(T) and the infected predator by this disease I,(T).
2.2 In the presence of second disease, SI disease, the predator
population consists of two subclasses, namely, the susceptible
predator S(T) and the infected predator by this disease I,(T).
Therefore at any time T we have N(T)=S(T)+ [;(T)+ I,(T) .

2.3 The susceptible predator has an alternative food sources
supplied by a constant rate >0.

2.4 Both of the diseases, SIS and SI, transmitted among the
predator individuals only, but not the prey individuals, by
contact with an infected predator at infection rate «; >0 and

a, >0 respectively.

2.5 Only the first disease disappears and the infected predator
becomes susceptible predator again at a recover rate w>0.
Finally both of the diseases, SIS and SI, induces the mortality
within the infected predator individuals at a constant rate
6,>0 and &,>0.

2.6 The infected predator, by SIS disease, feed on the prey
species according to Lotka-Volterra functional response with
attack rate constant 7, >0. Also, the infected predator by SI
disease feed on the prey species by functional response with
attack rate constant 7z, >0.
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These assumptions can be mathematically realized into the
following four differential equations

Z_I;: Pl(a-bP)—cS—cr,I, —cz,1, ]

S _ SecP—ayl, —al, -0+ ) +wl,
o @
d_ll": I(ect,P+a,S—0-51-w)

a,
dr

In order to simplifying the proposed model (2), the following
dimensionless variables are used:

=1,(ect,P + 0,5 -6 -5,)

t:ﬂTfPZEP/ SZES/ }/12511: y2:£lz
a a a a

Thus we obtain the following dimensionless form of the model
3):
dp _

T p[(l_hlp) —5—Tilx _72.1/2]

ds
E: s(ep —hyy, —hyy, +hy) + hsy,
®)

d
%:%(eﬁp“‘hzs_hs_he)
t

d

%=y2(612p+h3s—h7)

Where:

n=lso %0, n-%50,n-L0cq,
a c Cc a

h=Ls0,n =000, 5 =2F% g
C

represent the dimensionless parameters of the model (2). The
initial condition for model (3) may be taken as any point in

the region R*? . Obviously, the interaction functions in the right
hand side of system (3) are continuously differentiable
functions on R}, hence they are Lipschitizian. Therefore the
solution of system (3) exists and is unique. Further, all the
solutions of system (3) with non-negative initial condition are
uniformly bounded as shown in the following theorem.
THEOREM (1): All the solutions of system (3), which initiate
in | are uniformly bounded if the sufficient condition
hy <0 holds.

PROOF: From the first equation of system (3) we obtain that;
dp
—<pll-h
o <pll-hp)

Clearly by solving the above differential inequality we get

1
I f<—
lim sup p(t) i

Define the function M(t)zp(t)+ls(t)+ly1(t)+ly2(t) and
e e e

then take its time derivative along the solution of system (3),
gives
M <p —fs—ﬁy1 —£y2 where ¢ = min{— hy hg, b, }
dt e e e

<r—-¢M where 7 =(1+4¢)

1
H
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Now, by using Gronwall lemma [17], it obtains that:

0<M(t)<M(0)e +%(1 —e?)

which yields limsupM(t) < % that is independent of the initial
t—w

conditions. n
3. EXISTENCE OF EQUILIBRIUM POINTS:

The system (3) has at most eleven biologically feasible
equilibrium points, namely E, = (p,,s, , 1, Yar ), k=0,1,2,...,10 .
The existence conditions for each of these equilibrium points
are discussed in the following;:

3.1 The vanishing equilibrium point E,=(0,0,0,0) always
exists.

3.2 The axial equilibrium point on the s -axis E, =(0,s,,0,0)
where s, is any positive number, exists if and only if 1, =0.
33 The

E, =(p,,0,0,0) where p, = 1/hy , always exists.

axial  equilibrium  point on  thep -axis

3.4 The first disease and prey free equilibrium point
E, :(0,33,0,]/23) where:

7 4
=— and =— 4
53 I, Y23 I )
exists uniquely in the interior of the first quadrant of
sy, —plane under the following necessary and sufficient
condition h,>0 .
3.5 The second disease and prey free equilibrium point
E, =(0,s4,y14,0) where:
hs+h, hylhs+g) 5
T oh, h,h,

exists uniquely in the interior of the first quadrant of
sy, — plane under the following necessary and sufficient

Sy and y,, =

condition h,>0 .
3.6 The first disease and susceptible predator free equilibrium
point E; = (p5 ,0,0,3/25) where:

h, et,—hh,

and y,; = 5
et, er;

©)

exists uniquely in the interior of the first quadrant of
py, —plane under the following necessary and sufficient

Ps=

condition ez, >hh, .

3.7 The disease free equilibrium point E, =(p,,s,,0,0) where:
~h,

PéZT and s, =1-h,p, )

exists uniquely in the interior of the first quadrant of
ps—plane under the following necessary and sufficient

conditions h,<0 and 1>h,p,.

3.8 The second disease free
E;, = (P7 /S7, Y17 ,0) where:

equilibrium  point

(hS +hg —erlp7Xep7 +h4)
hz(he _ET1P7)

B hs+hg—er,p,

3 ®)

S5 and y,, =
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while p, represents a positive root of the following second
order polynomial equation
Ap*+Ap+A,=0
where
A =erhh,>0;
Ay == hyhgren,—er, (gt ryhy );
Ay =hohy — s+ fig+ 2,0, )
Therefore, straight forward computation shows that E, exists
uniquely in the interior of the first octant of psy, —plane if
and only if the following conditions are hold.
ep,>-h,, hy>maxler,p, , 7,h,} and
hohg<(hsthNhgheih,)
3.9 The first disease free equilibriumm point E; = (p8 ,85.,0, yzs)
where:

hy—h,—1,h - h
Ps = SBAE >, Ss:h7 %P5 and y282—8p8+ s ©)

h 1h 3 h 3 h 3

exists uniquely in the interior of the first octant of psy, — plane

under the following necessary and sufficient conditions
h
h>0, pg <—_ and hy>h +7,h,.
er,
3.10 The prey free equilibrium point E, = (O,s9 Y19 ,yzg) where:
s _hsthy _hy (h5+h6)(h4—h3y29)
’ h 2 h 3 h Zh 6
any positive number, E, exists uniquely in the interior of the

and y,, = where y,, is

first octant of sy,y, —plane under the following necessary
and sufficient conditions & S(h s+h 6): hyh,, hs>0 and
hy>hsys.

3.11 The coexistence equilibrium point E,, = (pm,sm,ym ,ym)

where
oy =l i)

_ . _olisthy)-nh,
Pro e(rth—r1h3) T

(Tzh Tl 3) ’

1
Yo10 = T_[l —hypio =81 — T1y110]
2

Swoleleaht 2l Nty + 2kt =1y Vol (nghy — byl g1 )]
e(rzh — Tl Xz'zh —Th 3)
Therefore, straight forward computation shows that E,, exists

Y110 =

uniquely in the Int. R} if and only if the following conditions
are hold.
hs\h s+ h 7,h
max{s(s—(’) By —12h4} <h, <2, ,h > 1h
h, 1
1> hypig + 810 + T1Yno
The Jacobian matrix of system (3) is [=(f;)eR,,,, with

and

entries
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Bu=1-2hp-s—-ty,—7oY,, Bno=-p, Bs=-up,
Bu=-10p, Bu=es, fo=ep—hyy;—hsy,+h,,
Bos=-hys+hs, Boy=-hss, Bu=eryyy, Py =hyy,
Byz=erip+hys—hs—hg, foy=0, Bu=eny,,

Bio=hsyy, Piz=0, Pu=erp+hss—h;

In what follows, the system’s equilibria are E, and we denote
by J, and /)’i[;-‘] the Jacobian and its entries evaluated at
E ,i=1..4,j=1..4,k=012,.,10

4. THE STABILITY ANALYSIS:
The equilibria E; is saddle point, since its eigenvalues are

1>0, hy, —(hs+hg)<0 and -k, <0.
THEOREM (2): The non-hyperbolic equilibrium point E, is
locally asymptotically stable in R? if and only if:

. h; hes
1-hp<s <min{s, —, (10)
Iy s —hs
PROOF: Consider the function
4 =p+l(s—sl -5 lniJ+h+£
e s,) e e
Clearly, ViRt >R and VIU(E)=0 with

VI(E)=0 VE#E,,Ec®R!. Hence it is positive definite
function in R?. Also, the derivative of V!"! with respect to the
time t is given as follows.

[1]
d‘d/t = p(l—hlp _51)*’%(}1251 _hs_551 _hej

h
+74(s—sl)+%(h3s1 —h7)
Since E, exists if and only if &, =0, in addition condition (10),

(1]

guarantee that <0 on subregion of R!, then V" is a

Lyapunov function on that subregion which satisfy condition
[1]

(10). since av <0 on subregion of R? then E, is a locally

asymptotically stable but not globally. [
THEOREM (3): The equilibrium point E, is locally
asymptotically stable in R? if and only if:
h
ep, < min{—h4, s + g , —7} (11)
1 2

PROOF: The Jacobian matrix of the system (3) at E, is given
by:

1-2hp, P2 TP, —op,
0 ep, +h, hg 0
L= 0  erp,—hy—h, 0
0 0 0 ery,p, —h,

So, the characteristic equation of ], can be written by
(1 -2hp, _ﬂpxep2 +hy _ﬂsxeﬁpz —hs—hg- Hyy )X
(erzpz —h; =, )= 0
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from which, we obtain that:

M, =1-2lp, <0 , p;=ep,+hy, pu, =erp,—hs—hg and

Hy, =€Tp, —hy

Here p,,u,,u, and u, denote to the eigenvalues in the
— direction,

—direction, s- direction, y, —direction and y,

respectively. So, it is easy to verify that, all the eigenvalues
have negative real parts if and only if the condition (11) holds.
Therefore, the equilibrium point E, is locally asymptotically
stable in R}.
stable too. ]
THEOREM (4):
E = (0,53,0, y23) is locally asymptotically stable in R? if and

Furthermore, it is a globally asymptotically

the non-hyperbolic equilibrium point

only if:

(1, +7,1,) hih,
1-hp< , §< and h,h, >hzh, (12)

h3 (h2h7_h3h6)
PROOF: Consider the function
V[3I—p+l(s 53— s3ln—]+£+— Yo— y23—y23ln£
e 53 e Y23

Clearly, VPRt 5 R and VBI(E;)=0 with

VBI(E)20 VE#E,,Ec®R!. Hence it is positive definite
function in R} . Also, the derivative of V'*! with respect to the
time ¢ is given as follows.

dvbl h, 1k, N h,h, hsh,
=p|1-hp-—- —hs—
dt hy  hy el| h, hys

[3]

Hence, <0 on subregion of R! under the sufficient

condition (12), then VP! is a Lyapunov function on that
subregion of R? which satisfies condition (12). Therefore E,
is a locally asymptotically stable but not globally. [
THEOREM (5): the second disease and prey free equilibrium
point E, = (0,54 ,Yia ,O) is locally asymptotically stable in R? if
and only if:

hyh (1 hlp) (h +h Xh +71h ) Y1<Yia, k

S, < d
g <—
h3

6
and h—y1<s<s4 ,

4
PROOF: Consider the function
Vi =p ""1(5 TS84 8 IHLJ +1£‘/1 ~Yu
e ps e

4 14

1
~Yis lnyy_l] +;,‘/2

VH(E,)=0 with

Hence it is positive definite

Clearly, vEL R SR and
VM(E)20 VYE#E, Ec®!.

function in R} . Also, the derivative of V!* with respect to the

dvt h h
it —P(l hip=s, - T1y14)+74(s_54)+_6(,‘/1 _3/14)
y 54Y y
+72(h354—h7)+ = (ny5— s )+%(h ~ys)
AAS
Hence, <0 on subregion of %! under the sufficient

condition (13), then V¥ is a Lyapunov function on that
subregion of R} which satisfies condition (13). Therefore E,
is a locally asymptotically stable but not globally. [
THEOREM (6):
E,= (p5,0,0,y25) is locally asymptotically stable in ®? if and

the non-hyperbolic equilibrium point

only if:
h Y <h p<p < min h_6 M

3Yo5 <Ny, 5 o . (14)
and 1-h,p <7,Y,s5
PROOF: Consider the function
V[sl_[p Ps p51n£]+ +y1 ]/2 Y5 — Vo5 In"= /2

ps) € ¢ Yas

Clearly, VB R 5 R and VPI(E5)=0 with

VPIE)20 VE#E,,Ec®R!. Hence it is positive definite
function in R} . Also, the derivative of V'*! with respect to the
time ¢ is given as follows.

ave hy y h
—p(l hyp- szzs)"‘ 5(_"‘?’5 3625 +y1(11h5 _?6}

dt
+h1P5(P_P5)
[5]

Hence, <0 on subregion of KR! under the sufficient

condition (14), then VP! is a Lyapunov function on that
subregion of R} which satisfies condition (14). Therefore E;
is a locally asymptotically stable but not globally. [
THEOREM (7):
E, =(ps,55,0,0) is locally asymptotically stable in ®? if and

the disease free equilibrium point

only if:

: h; 5
P<Pe,Se<miniz;y,, —; and s<— (15)
h3 2

PROOF: Consider the function
vl = [p Pe — Ve lnﬁJ +l[s S6 — S ln—J Vi, b2
6) € ss) e e
Clearly, VRt SR and VII(E)=0 with

VI(E)20 VE#E,,Ec®R!. Hence it is positive definite
function in R} . Also, the derivative of V!*! with respect to the
time ¢ is given as follows.

dv'el y
time ¢ is given as follows. i =(p- p(,)(l hlp)+ pé( rlylﬁ) o (hzs h )
Y2 he
+?(h 356 _h7)_ 7% +PSe+25P6 +T2P6Y>
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Hence, <0 on subregion of %! under the sufficient

condition (15), then V' is a Lyapunov function on that
subregion of R} which satisfies condition (15). Therefore E,
is a locally asymptotically stable but not globally. [

THEOREM (8): the equilibrium point E, =(p,,s,,y,,,0) is

locally asymptotically stable in %? if and only if:

eryp, +hys, <h, ,s< Ebd)
(hs +h6)]/17 +(hz%

PROOF: Consider the function

v = (p—p7 -p, ln£]+l[5—s7 -5, lni]
p e

and p < (16)
~ h4)s7 p<p;

7 S7

17 €

1
+;[y1 Y17 Y17 Ini}"'ﬂ

VIRt 5% VI(E,)=0 with
VU(E)20 VE#E,,Ec®R!. Hence it is positive definite

Clearly, and

function in R} . Also, the derivative of V! with respect to the
time ¢ is given as follows.

avt h, h
it = (p_p7)(1_hlp)+5(l77 +f‘%)‘?(57 +le17)

hg hs h;
+Y Tlp7_? +Y, f2p7+?57 -

e

h
+((h5 +h6)y_;7+(hzy1 —h4)s?7—e—:s7ylj

[71

Hence, <0 on subregion of KR! under the sufficient

condition (16), then V! is a Lyapunov function on that
subregion of R} which satisfies condition (16). Therefore E,
is a locally asymptotically stable but not globally. [
THEOREM (9): the equilibrium point E, = (ps 5% ,O,yzs) is
locally asymptotically stable in R} if and only if:

et pg +hasg <hg, espg(h7+ 2'zh4)< hs(h7_ 672778) and p<pg (17)
PROOF: Consider the function

vl :(p—p8 -y 1n£]+l(s—s8 —5g Inij+£

s) e ss) e
1
+_[3/2 ~ Y23 = Yas lnﬁJ
e 28
Clearly, VLR SR and VII(E)=0 with

VBI(E)20 VE#E,,Eec®R!. Hence it is positive definite
function in R?. Also, the derivative of V!®! with respect to the
time ¢ is given as follows.

AV hg

= (P _Ps)(l_hlp)_P(ss +72y28)+y1(71P8 +h?258 _?)
+(S(h7yzs _h458)_h558y1)

vt

Hence, <0 on subregion of R?! under the sufficient

condition (17), then V' is a Lyapunov function on that
subregion of R} which satisfies condition (17). Therefore E,
is a locally asymptotically stable but not globally. [
THEOREM (10): the equilibrium point E, =(0,8,,y19,55) is

locally asymptotically stable in R} if and only if:

hyhs
1-hp<sy+T1Y 10+ Tol00 , >
1 9 T T1Y 19 T T2Y29 s Yoo W
(18)
hh;y 59
and <5< Sg
hs\hy =h3y o
PROOF: Consider the function
VPl = p"'l[s_se: 59 lni]"'l[% ~ Y19~ Yo lnil
e Sy ) e 19
1
T Y2 = Y20 = Y29 InY2
e Yoo
Clearly, VPR SR and VE(E)=0 with

VEE)20 VE#E,,EcR!. Hence it is positive definite
function in R} . Also, the derivative of V! with respect to the
time t is given as follows.

A 1| h:s
0t = P(l —hp—Sg =711~ 75 y29)+ _{L(hﬂ/w - h4)+ h7Y29
el hg
h h-+h
+ st/l (S - 59)+ ( ;hzh;)(h4h5 - h3.‘/29(h5 +hy ))
Since E, exists if and only if h,>h,y,,, in addition

[91
condition(18) guarantee that

<0 on subregion of %!,

then V' is a Lyapunov function on that subregion which
satisfies condition (18). Therefore E, is a locally

asymptotically stable but not globally. [
THEOREM (11): The coexistence equilibrium point E,, is

locally asymptotically stable in R} if and only if:

h6 _h4 h7
max{s—, ——, t<P<Pyp, Sty +0,y,<l-hp,

er, e er,

s h
Yo <N Yyq0 , Y210 s <min< sy, ,—5 19)
S10 hy
5Y110
and <Y1 <Yio
S10

PROOF: Consider the function

Yol (S i~ Pio miJ +l(s ~S10 =51 lniJ
P ) ¢ 510

1 1
+E[]/1 — Y110 = Y110 lnyy_lj"'z[l/z —Ya10 = Y210 IHLJ

110 Y210
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Clearly, — VI':®* 5%  and  VIM(E,)=0  with
VIUE)20 VE#E,,Ec®R’. Hence it is positive definite
function in R*. Also, the derivative of V"' with respect to

the time ¢ is given as follows.
d‘;—[:m=(pm Pl Rp) st ey s [+ e+ s —si0)
Hlerap =1y Nz = yaro P lerip =B Js - 1)
+§(Sm Yi— Syuoxhzs —hs)+ hs(slo Ya —Syzw)

Since E,, exists if and only if h,>h,y,,, in addition

[10]
<0 on subregion of R?,

condition(19) guarantee that

then V!"”is a Lyapunov function on that subregion which
satisfies condition (19). Therefore E;, is a locally

asymptotically stable but not globally. [
5. NUMERICAL SIMULATIONS:

We give some numerical analysis in support our theoretical
findings. The system (3) is solved numerically, for different
sets of parameters, using predictor-corrector method with six
order Runge-Kutta method, and then the time series for the
trajectories of system (3) are draw. Now before we go farther
with numerical analysis, We will use the solid line (—) for p,

dash line (— —) for s, dot line (....) for y,, dash-dot line (— .
—) for y, and the initial point (0.75,0.75,0.75,0.75 ). in the all
of the following figures.

Now to show the stable of axial equilibrium point on the s -
axis E; used the following set of hypothetical parameters
values:

h,=50,h,=001,h,=0.01,h,=0,h,=0.08,
he=0.1,h,=05,e=04,7,=03,7,=0.1

In Fig.(1), the system (3) approaches asymptotically to the
equilibrium point E, =(0,1.059,0,0).

(20)

'3
g m
Fos
0
% 0 250 500 750 1000
. 15
- —
a na
=] 250 50 50 1000
i 1 -
&
5 05
i
E 0 250 50 750 1000
']
£ osf\
g 0 =0 50 750 1000

Tirne

Fig.(1): time series of the trajectories of the system (3)
which shows E, is alocally asymptotically stable point.

Now to show the stable of axial equilibrium point on the p -

axis equilibrium point E, used the following set of b oo
hypothetical parameters values: &
hy=50,h,=0.01,h;=0.01,h, =-0.04, h;=0.08, ’ 5‘ o 105 % £
hg=01,h,=05,e=04,7,=03,7,=0.1 @D §f
g:" 5_, 100 0 W M0 sm o ]
Iy TT——
13SER © 201 PO m  w @ @
ttp: s ijser] ¢ F
£ 05
3 —
g ° W m xnﬁm w0 S0 60 7w
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the system (3) approaches asymptotically to the equilibrium
point E, =(0.02,0,0,0) as show as in Fig.(2).

g o2
E 0is
£ o
i [ L -
E ‘n 300 r{n a0
z 0s
& ] .
:? ‘U 30 d.lJ A0
i 05 .
¥ TU 200 600 200
i
£ osf\
N B .
- 30 00 500
¥ Time
Fig.(2): time series of the trajectories of the system (3)
which shows E, is a globally asymptotically stable point.

Now to show the stable of first disease and prey free
equilibrium point E, used the following set of hypothetical

parameters values:
h,=50,h,=08,hy=0.1,h,=02,h =02,

he=008,h,=0.03,e=08,7,=03,7,=09

In Fig.(3), the system (3) approaches asymptotically to the
equilibrium point E, =(0,0.295,0,2.018 ).

(22)

03
02
Ul\.\

Fred. 2 Popu.  Maf. Prad. T Pope.  SwePred. Popu. Pray Popa.
=

? [} 2000 400 B 00
Thme

Fig.(3): time series of the trajectories of the system (3)
which shows E, is alocally asymptotically stable point.

Now to show the stable of second disease and prey free
equilibrium point E, used the following set of hypothetical

parameters values:
hy=50,h,=08,hy=01,h,=02,h,=02,
he=0.08,h,=02,e=0.8,7,=0.8,7,=09

In Fig.(4), the system (3) approaches asymptotically to the
stable equilibrium point E, =(0,0.35,0.875,0)

(23)
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Now to show the stable of first disease and susceptible
predator free equilibrium pointE; used the following set of

hypothetical parameters values:
h,=50,h,=08,h;=0.1,h,=-0.01,h;=02,

he=008,h,=001,e=08,7,=08,7r,=09

In Fig.(5), the system (3) approaches asymptotically to the
stable equilibrium point E; =(0.014,0,0,0.385 )

(24)
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Fig.(5): time series of the trajectories of the system (3)
which shows E; is a locally asymptotically stable point.

Now to show the stable of disease free equilibrium point E,
used the following set of hypothetical parameters values:
hy=50,h,=0.1,h;=02,h, =-0.001, h;=0.08,
h¢=01,h,=05,e=04,7,=03,7,=0.1

In Fig.(6), the system (3) approaches asymptotically to the
stable equilibrium point E, =(0.01,0.505,0,0)

(25)
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Now to show the stable of first disease free equilibrium point
E, used the following set of hypothetical parameters values:

hy=50,h,=05,h,=03,h,=0.1,h;=0.1,

(27)
hy=02,h,=01,e=01,7,=01,7,=0.2
As shown as in Fig.(8),the system (3) approaches
asymptotically to the equilibrium point
E, =(0.013,0.332,0,0.342).
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Fig.(8): time series of the trajectories of the system (3)
which shows Eg is a locally asymptotically stable point.

Now to show the stable of prey free equilibrium point E,

g Huﬁ used the following set of hypothetical parameters values:
ok hy=50,h,=0.01,h;=0.05,h,=045,h;=0.06,

L0 5000 10000 (28)

- o he=0.03,h,=045,e=0.4,7,=0.3,7,=03

oo ; : ; — As shown as in Fig.(9), the system (3) approaches

S asymptotically to the equilibrium point

P E, =(0,8.98,0.555,0.16 ).

f‘é % — 00 1000

Thme
Fig.(6): time series of the trajectories of the system (3)
which shows E is alocally asymptotically stable point.
NowTo—sSnmow e stapre or-secortaarsease Tree—equilibrium P
point E, used the following set of hypothetical parameters £ N
values: é o0 E] s )
h,=50,h,=0.8,h;=0.01,h,=-0.0001,h;=0.2, » i ° -
h,=0.08,h,=05,e=05,7,=04,7,=0.8 (26) | R — L L
As shown as in Fig.(7), the system (3) approaches i :? T
asymptotically to the stable equilibrium . T = = T
point E, =(0.013,0.344,0.046 ,0 ). L
E :0 ‘;1 . IEﬂ 150
- Fig.(9): time series of the trajectories of the system (3)
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Finally, to understand of dynamical behavior at the
coexistence equilibrium point E;, the following set of

hypothetical parameter values is chosen:
h,=48,h,=0.88,h,;=0.1,h, =-0.00019,h;=0.2,

(29)
he=0.08,h,=0.037,¢e=0.7,7,=05,7,=0.9
As shown as in Fig.(10), the system(3) approaches
asymptotically to the stable equilibrium

point E,, =(0.013,0.309,0.018,0.077).

ol

06 08 1 12 14 16 18
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=
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=

0.2 04 06 0

0 02 04 06 08 1 12 14 16 18
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0 02 04 08 08 1 12 14 16 18
Tima 10

Fig.(10): time series of the trajectories of the system (3)
which shows E,, is alocally asymptotically stable point.

6. CONCLUSIONS AND DISCUSSION:

The stability of model has been studied with linear
functional response and numerical response. We propose
only one model contain more than one model as
following;:

First, we investigated that the vanishing equilibrium point
E,=(0,0,0,0) is always unstable, the conditions (10) for
which the axial equilibrium point on the s-axis
E, =(0,1.059,0,0) is locally asymptotically stable but not

globally, and axial equilibrium point on the p-axis
E,=(0.02,0,0,0) is locally asymptotically stable also it's

globally.
Second, we have SI- epidemic model with the
equilibrium point E,, and show that

E,=(0,0.295,0,2.018 ) is locally asymptotically stable but

not globally with conditions (12).
Third, we have SIS - epidemic model with the equilibrium

point E,, and show that, in theorem (5),
E,=(0,0.35,0.875,0) is locally asymptotically stable but
not globally.

Fourth, we have prey-infected predator by SI model with
the equilibrium point E,, and show that, in theorem (6),

E, =(0.014,0,0,0.385) is locally asymptotically stable but

not globally.
Fifth, we have prey-predator model with the equilibrium
point E,, and show that, in theorem (7),

E, =(0.01,0.505,0,0) is locally asymptotically stable but
not globally.

Sixth, we have prey-predator model with SIS -disease in
predator, investigated the condition (16) for which the
equilibrium point E, is stable, and numerically show that

E, =(0.013,0.344,0.046 ,0 ) is locally asymptotically stable

but not globally.

Seventh, we have prey-predator model with SI -disease in
predator, investigated the condition (17) for which the
equilibrium point Eg is stable, and numerically show that

E, =(0.013,0.332,0,0.342 ) is locally asymptotically stable

but not globally.

Eighth, we have epidemic model spread two diseases the
population, and investigated in the theorem (10) the
equilibrium point E, is stable, and numerically show that

E,=(0,8.98,0.555,0.16 ) is locally asymptotically stable

but not globally.
Finally, we investigated the condition (19) for which the
coexistence equilibrium point E,, is stable, more than,

numerically prove that E,, =(0.013,0.309,0.018,0.077) is

locally asymptotically stable but not globally. In general,
use the Lyapunov function to find the stability of the
system (3) at each most of its equilibrium points.
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