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Abstract- In this paper, the effect of alternative food sources and transitive two different types of diseases in the ecological models, 
specifically a prey-predator model, is proposed and studied. Both of the diseases transition in the same population, specifically in the 
predators. The first one of which the SIS-epidemics is transmitted. The second one of which the SI-epidemics is transmitted. The model is 
characterized by a four of autonomous nonlinear differential equations with nonnegative parameters. All the model's equilibriums are 
determined and the dynamic behaviors of the model near them are investigated. Finally, contains the numerical simulation investigation at 
each equilibrium points 
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1. INTRODUCTION: 
         
Diseases in a prey-predator system have received significant 
interest in resent years. It is well known that, in nature species 
does not exist alone. In fact, any given habitat may contain 
dozens or hundreds of species, some times thousands. Since 
any species has at least the potential to interact with any other 
species in its habitat, the possibility of spread of the disease in 
a community rapidly becomes astronomical as the number of 
infected species in the habitat increases. Therefore, it is more 
of biological significance to study the effect of disease on the 
dynamical behavior of interacting species 
 many researchers, especially in the last two decades, 
have proposed and studied different prey-predator models in 
the presence of disease in one of the species see for example 
[1-13] and the references there in. In most previous studies, the 
only means of transmission of disease is the direct contact 
between individuals. However, many diseases are transmitted 
in the species not only through contact, but also directly from 
environment. 
Elisa Elena et al [14] proposed prey-predator model two 
diseases affect the prey. Predators are allowed to have other 
food sources. Fabio Roman et al [15] proposed prey-predator 
model containing two disease strains in the predator 
population. 

On contrast to all of the above studies, in this paper a 
prey-predator model involving SIS and SI infectious diseases 
in predator species is proposed and analyzed. It is assumed 
that the predator population has external source of food. It is 
assumed that both of the diseases spread within predator 
population by contact between susceptible individuals and 
infected individuals. Further, in this model, linear type of 
functional response as well as linear incidence rate for 
describing the transition both of disease are used.  
2. MATHEMATICAL MODEL: 
The basic prey-predator model is 
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                                                                     (1) 

where ( )TP  and ( )TN  represent the densities of prey and 
predator species at time T  respectively. Clearly the above 
model is a simple Lotka-Volterra prey-predator model with 
logistic growth rate for prey. The positive parameters 

ecba ,,,  and θ  represent intrinsic growth rate, intra-specific 
competition, attack rate, conversion rate and natural death 
rate respectively [16]. 
We impose the following assumptions: 
2.1 In the presence of first disease, SIS disease, the predator 
population consists of two subclasses, namely, the susceptible 
predator )(TS   and the infected predator by this disease )(1 TI . 
2.2 In the presence of second disease, SI disease, the predator 
population consists of two subclasses, namely, the susceptible 
predator )(TS   and the infected predator by this disease )(2 TI . 
Therefore at any time T  we have )()()()( 21 TITITSTN ++= . 
2.3 The susceptible predator has an alternative food sources 
supplied by a constant rate 0>β . 
2.4 Both of the diseases, SIS and SI, transmitted among the 
predator individuals only, but not the prey individuals, by 
contact with an infected predator at infection rate 01 >α  and 

02 >α  respectively. 
2.5 Only the first disease disappears and the infected predator 
becomes susceptible predator again at a recover rate 0>w . 
Finally both of the diseases, SIS and SI, induces the mortality 
within the infected predator individuals at a constant rate 

01 >δ  and 02 >δ . 
2.6 The infected predator, by SIS disease, feed on the prey 
species according to Lotka-Volterra functional response with 
attack rate constant 01 >τ . Also, the infected predator by SI 
disease feed on the prey species by functional response with 
attack rate constant 02 >τ . 
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These assumptions can be mathematically realized into the 
following four differential equations 
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In order to simplifying the proposed model (2), the following 
dimensionless variables are used: 
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Thus we obtain the following dimensionless form of the model 
(3): 
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represent the dimensionless parameters of the model (2). The 
initial condition for model (3)   may be taken as any point in 
the region 4

+ℜ . Obviously, the interaction functions in the right 
hand side of system (3) are continuously differentiable 
functions on 4

+ℜ , hence they are Lipschitizian.   Therefore the 
solution of system (3) exists and is unique. Further, all the 
solutions of system (3)   with non-negative initial condition are 
uniformly bounded as shown in the following theorem.      
THEOREM (1): All the solutions of system (3), which initiate 
in 4

+ℜ   are uniformly bounded if the sufficient condition  
04 <h  holds. 

PROOF: From the first equation of system (3) we obtain that; 
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then take its time derivative along the solution of system (3), 
gives 
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Now, by using Gronwall lemma [17], it obtains that: 

( ) ( ) ( )tt eet φφ

φ
π −− −+Μ≤Μ< 100  

which yields ( )
φ
π

≤Μ
∞→

t
t

suplim  that is independent of the initial 

conditions.                                                                                         ■ 
3. EXISTENCE OF EQUILIBRIUM POINTS: 
The system (3) has at most eleven biologically feasible 
equilibrium points, namely ( ) 10,...,2,1,0,,,, 21 == kyyspE kkkkk . 
The existence conditions for each of these equilibrium points 
are discussed in the following: 
3.1 The vanishing equilibrium point ( )0,0,0,00 =E  always 
exists. 
3.2 The axial equilibrium point on the s -axis ( )0,0,,0 11 sE =  
where 1s  is any positive number, exists if and only if  04 =h . 
3.3 The axial equilibrium point on the p -axis 

( )0,0,0,22 pE = where 12 1 hp = , always exists. 
3.4 The first disease and prey free equilibrium point 

( )3233 ,0,,0 ysE =  where: 
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7
3 h

h
s =  and 

3

4
32 h

h
y =                                                                    (4) 

exists uniquely in the interior of the first quadrant of 
−2ys plane under the following necessary and sufficient 

condition  04 >h  .  
3.5 The second disease and prey free equilibrium point 

( )0,,,0 4144 ysE =  where: 
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exists uniquely in the interior of the first quadrant of 
−1ys plane under the following necessary and sufficient 

condition  04 >h  .  
3.6 The first disease and susceptible predator free equilibrium 
point ( )5255 ,0,0, ypE = where: 
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exists uniquely in the interior of the first quadrant of 
−2yp plane under the following necessary and sufficient 

condition  712 hhe >τ  .  
3.7 The disease free equilibrium point ( )0,0,, 666 spE = where: 

e
h

p 4
6

−
=  and 616 1 phs −=                                                           (7) 

exists uniquely in the interior of the first quadrant of 
−sp plane under the following necessary and sufficient 

conditions  04<h    and  611 ph> .  
3.8 The second disease free equilibrium point 

( )0,,, 71777 yspE =  where: 

2
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7 h
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s

τ−+
=  and 
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while 7p  represents a positive root of the following second 
order polynomial equation 
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Therefore, straight forward computation shows that 7E  exists 
uniquely in the interior of the first octant of −1ysp plane if 

and only if the following conditions are hold. 
{ }4171647 ,max, hpehhpe ττ>−>   and   

( )( )4166562 hhhhhh τ++<   
3.9 The first disease free equilibrium point ( )82888 ,0,, yspE =  
where: 
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exists uniquely in the interior of the first octant of −2ysp plane 
under the following necessary and sufficient conditions  
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3.10 The prey free equilibrium point ( )929199 ,,,0 yysE = where: 

3

7

2

65
9 h

h
h

hhs =
+

=  and 
( )( )

62

923465
19 hh

yhhhh
y

−+
=   where 92y  is 

any positive number, 9E exists uniquely in the interior of the 
first octant of −21 yys plane under the following necessary 
and sufficient conditions  ( ) 0, 472653 >=+ hhhhhh    and  

9234 yhh > .  
3.11 The coexistence equilibrium point ( )102101101010 ,,, yyspE =  
where 
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Therefore, straight forward computation shows that 10E  exists 

uniquely in the Int. 4
+ℜ  if and only if the following conditions 

are hold. 
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The Jacobian matrix of system (3) is 44)( xjiJ ℜ∈= β , with 
entries 
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In what follows, the system’s equilibria are  kE  and we denote 

by kJ  and [ ]k
jiβ  the Jacobian and its entries evaluated at 

10,...,2,1,0,4,...,1,4,...,1, === kjiEk  
4. THE STABILITY ANALYSIS: 
The equilibria 0E  is saddle point, since its eigenvalues are 

01 > , 4h , ( ) 065 <+− hh  and 07 <−h . 

THEOREM (2): The non-hyperbolic equilibrium point 1E  is 
locally asymptotically stable in 4

+ℜ  if and only if: 
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PROOF: Consider the function  
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]1[ ,0 +ℜ∈≠∀≠ EEEEV . Hence it is positive definite 
function in 4

+ℜ . Also, the derivative of ]1[V  with respect to the 
time t  is given as follows. 
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Since 1E  exists if and only if 04 =h , in addition condition (10), 

guarantee that 0
]1[

<
dt

dV  on subregion of 4
+ℜ , then ]1[V  is a 

Lyapunov function on that subregion which satisfy condition 

(10). since 0
]1[

<
dt

dV  on subregion of 4
+ℜ  then 1E  is a locally 

asymptotically stable but not globally.                                         ■ 
THEOREM (3): The equilibrium point 2E  is locally 
asymptotically stable in 4

+ℜ  if and only if: 







 +
−<

2

7

1

65
42 ,,min

ττ
hhhhep                                                     (11) 

PROOF: The Jacobian matrix of the system (3) at 2E  is given 
by: 
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So, the characteristic equation of 2J  can be written by  
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from which, we obtain that: 
652114221 ,,021 hhpehepph ysp −−=+=<−= τµµµ and 

7222 hpey −= τµ   
Here 1,, ysp µµµ  and 2yµ  denote to the eigenvalues in the 
−p direction, −s direction, −1y direction and −2y direction, 

respectively. So, it is easy to verify that, all the eigenvalues 
have negative real parts if and only if the condition (11) holds. 
Therefore, the equilibrium point 2E  is locally asymptotically 

stable in 4
+ℜ . Furthermore, it is a globally asymptotically 

stable too.                                                                                          ■ 
THEOREM (4): the non-hyperbolic equilibrium point 

( )3233 ,0,,0 ysE =  is locally asymptotically stable in 4
+ℜ  if and 
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Hence, 0
]3[

<
dt

dV  on subregion of 4
+ℜ  under the sufficient 

condition (12), then ]3[V  is a Lyapunov function on that 
subregion of 4

+ℜ  which satisfies condition (12). Therefore 3E  
is a locally asymptotically stable but not globally.                     ■ 
THEOREM (5): the second disease and prey free equilibrium 
point ( )0,,,0 4144 ysE = is locally asymptotically stable in 4

+ℜ  if 
and only if: 
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PROOF: Consider the function  
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Hence, 0
]4[

<
dt

dV  on subregion of 4
+ℜ  under the sufficient 

condition (13), then ]4[V  is a Lyapunov function on that 
subregion of 4

+ℜ  which satisfies condition (13). Therefore 4E  
is a locally asymptotically stable but not globally.                     ■ 
THEOREM (6): the non-hyperbolic equilibrium point 
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Hence, 0
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<
dt

dV  on subregion of 4
+ℜ  under the sufficient 

condition (14), then ]5[V  is a Lyapunov function on that 
subregion of 4

+ℜ  which satisfies condition (14). Therefore 5E  
is a locally asymptotically stable but not globally.                     ■ 
THEOREM (7): the disease free equilibrium point 

( )0,0,, 666 spE = is locally asymptotically stable in 4
+ℜ  if and 
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Hence, 0
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dV  on subregion of 4
+ℜ  under the sufficient 

condition (15), then ]6[V  is a Lyapunov function on that 
subregion of 4

+ℜ  which satisfies condition (15). Therefore 6E  
is a locally asymptotically stable but not globally.                     ■ 
 
THEOREM (8): the equilibrium point ( )0,,, 71777 yspE =  is 

locally asymptotically stable in 4
+ℜ  if and only if: 

( ) ( ) 74127165

175
77372 ,

shyhyhh
ysh

shshpe
−++

<<+τ  and 7pp <    (16) 

PROOF: Consider the function  

e
y

y
yyyy

e

s
ssss

ep
ppppV

2

71

1
71711

7
77

7
77

]7[

ln1

ln1ln

+













−−+









−−+








−−=

 

Clearly, ℜ→ℜ+
4]7[ :V  and ( ) 07

]7[ =EV  with 
( ) 4

7
]7[ ,0 +ℜ∈≠∀≠ EEEEV . Hence it is positive definite 

function in 4
+ℜ . Also, the derivative of ]7[V  with respect to the 

time t  is given as follows. 
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Hence, 0
]7[

<
dt

dV  on subregion of 4
+ℜ  under the sufficient 

condition (16), then ]7[V  is a Lyapunov function on that 
subregion of 4

+ℜ  which satisfies condition (16). Therefore 7E  
is a locally asymptotically stable but not globally.                     ■ 
THEOREM (9): the equilibrium point ( )82888 ,0,, yspE =  is 

locally asymptotically stable in 4
+ℜ  if and only if: 
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Clearly, ℜ→ℜ+
4]8[ :V  and ( ) 08

]8[ =EV  with 
( ) 4

8
]8[ ,0 +ℜ∈≠∀≠ EEEEV . Hence it is positive definite 

function in 4
+ℜ . Also, the derivative of ]8[V  with respect to the 

time t  is given as follows. 
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Hence, 0
]8[

<
dt

dV  on subregion of 4
+ℜ  under the sufficient 

condition (17), then ]8[V  is a Lyapunov function on that 
subregion of 4

+ℜ  which satisfies condition (17). Therefore 8E  
is a locally asymptotically stable but not globally.                     ■ 
THEOREM (10): the equilibrium point ( )829199 ,,,0 yysE =  is 

locally asymptotically stable in 4
+ℜ  if and only if: 
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Clearly, ℜ→ℜ+
4]9[ :V  and ( ) 09

]9[ =EV  with 

( ) 4
9

]9[ ,0 +ℜ∈≠∀≠ EEEEV . Hence it is positive definite 
function in 4

+ℜ . Also, the derivative of ]9[V  with respect to the 
time t  is given as follows. 
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Since 9E  exists if and only if 9234 yhh > , in addition 

condition(18) guarantee that 0
]9[

<
dt

dV  on subregion of 4
+ℜ , 

then ]9[V  is a Lyapunov function on that subregion which 
satisfies condition (18). Therefore 9E  is a locally 
asymptotically stable but not globally.                                         ■ 
THEOREM (11): The coexistence equilibrium point 10E  is 
locally asymptotically stable in 4

+ℜ  if and only if: 
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PROOF: Consider the function  
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Clearly, ℜ→ℜ+
4]10[ :V  and ( ) 010

]10[ =EV  with 

( ) 4
10

]10[ ,0 +ℜ∈≠∀≠ EEEEV . Hence it is positive definite 
function in 4

+ℜ . Also, the derivative of ]10[V  with respect to 
the time t  is given as follows. 
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Since 10E  exists if and only if 9234 yhh > , in addition 

condition(19) guarantee that 0
]10[

<
dt

dV  on subregion of 4
+ℜ , 

then ]10[V is a Lyapunov function on that subregion which 
satisfies condition (19). Therefore 10E  is a locally 
asymptotically stable but not globally.                                         ■ 
5. NUMERICAL SIMULATIONS: 
We give some numerical analysis in support our theoretical 
findings. The system (3) is solved numerically, for different 
sets of parameters, using predictor-corrector method with six 
order Runge-Kutta method, and then the time series for the 
trajectories of system (3) are draw. Now before we go farther 
with numerical analysis, We will use the solid line (ـــــــ) for p , 
dash line ( ــــ  ـــ ) for s , dot line (….) for 1y , dash-dot line ( ـــ  . 
for 2y (ـــ  and the initial point ( )75.0,75.0,75.0,75.0 . in the all 
of the following figures. 
Now to show the stable of axial equilibrium point on the s -
axis 1E  used the following set of hypothetical parameters 
values:   

1.0,3.0,4.0,5.0,1.0
,08.0,0,01.0,01.0,50

2176

54321

=====

=====

ττehh
hhhhh

                      (20) 

In Fig.(1), the system (3) approaches asymptotically to the 
equilibrium point ( )0,0,059.1,01 =E . 
 

 
 
 
 
 
 
 
 
 
 

 
Now to show the stable of axial equilibrium point on the p -
axis equilibrium point 2E  used the following set of 
hypothetical parameters values:   

1.0,3.0,4.0,5.0,1.0
,08.0,04.0,01.0,01.0,50

2176

54321

=====

=−====

ττehh
hhhhh

               (21) 

the system (3) approaches asymptotically to the equilibrium 
point ( )0,0,0,02.02 =E  as show as in Fig.(2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now to show the stable of first disease and prey free 
equilibrium point 3E  used the following set of hypothetical 
parameters values:   

9.0,3.0,8.0,03.0,08.0
,2.0,2.0,1.0,8.0,50

2176

54321

=====

=====

ττehh
hhhhh

                        (22) 

In Fig.(3), the system (3) approaches asymptotically to the 
equilibrium point ( )018.2,0,295.0,03 =E . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now to show the stable of second disease and prey free 
equilibrium point 4E  used the following set of hypothetical 
parameters values:   

9.0,8.0,8.0,2.0,08.0
,2.0,2.0,1.0,8.0,50

2176

54321

=====

=====

ττehh
hhhhh

   (23) 

In Fig.(4), the system (3) approaches asymptotically to the 
stable equilibrium point ( )0,875.0,35.0,04 =E  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.(1): time series of the trajectories of the system (3) 
which shows 1E  is a locally asymptotically stable point. 

 
Fig.(2): time series of the trajectories of the system (3) 

which shows 2E  is a globally asymptotically stable point. 

 
Fig.(3): time series of the trajectories of the system (3) 

which shows 3E  is a locally asymptotically stable point. 
 

 
( )    f   f   ( ) 
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Now to show the stable of first disease and susceptible 
predator free equilibrium point 5E  used the following set of 
hypothetical parameters values:   

9.0,8.0,8.0,01.0,08.0
,2.0,01.0,1.0,8.0,50

2176

54321

=====

=−====

ττehh
hhhhh

                     (24) 

In Fig.(5), the system (3) approaches asymptotically to the 
stable equilibrium point ( )385.0,0,0,014.05 =E  
 

 
 
 
 
 

 
 
 
 
 
 
 
Now to show the stable of disease free equilibrium point 6E  
used the following set of hypothetical parameters values:   

1.0,3.0,4.0,5.0,1.0
,08.0,001.0,2.0,1.0,50

2176

54321

=====

=−====

ττehh
hhhhh

                 (25) 

In Fig.(6), the system (3) approaches asymptotically to the 
stable equilibrium point ( )0,0,505.0,01.06 =E  
 
 
 
 
 
 
 
 
 
 
 
 
 
Now to show the stable of second disease free equilibrium 
point 7E  used the following set of hypothetical parameters 
values:   

8.0,4.0,5.0,5.0,08.0
,2.0,0001.0,01.0,8.0,50

2176

54321

=====

=−====

ττehh
hhhhh

               (26) 

As shown as in Fig.(7), the system (3) approaches 
asymptotically to the stable equilibrium 
point ( )0,046.0,344.0,013.07 =E . 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now to show the stable of first disease free equilibrium point 

8E  used the following set of hypothetical parameters values:   

2.0,1.0,1.0,1.0,2.0
,1.0,1.0,3.0,5.0,50

2176

54321

=====

=====

ττehh
hhhhh

                         (27) 

As shown as in Fig.(8),the system (3) approaches 
asymptotically to the equilibrium point 

( )342.0,0,332.0,013.08 =E . 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
Now to show the stable of prey free equilibrium point 9E  
used the following set of hypothetical parameters values:   

3.0,3.0,4.0,45.0,03.0
,06.0,45.0,05.0,01.0,50

2176

54321

=====

=====

ττehh
hhhhh

                 (28) 

As shown as in Fig.(9), the system (3) approaches 
asymptotically to the equilibrium point 

( )16.0,555.0,98.8,09 =E . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.(5): time series of the trajectories of the system (3) 
which shows 5E  is a locally asymptotically stable point. 

 
Fig.(6): time series of the trajectories of the system (3) 
which shows 6E  is a locally asymptotically stable point. 

 

 
Fig.(8): time series of the trajectories of the system (3) 
which shows 8E  is a locally asymptotically stable point. 
 

 
Fig.(9): time series of the trajectories of the system (3) 
which shows 9E  is a locally asymptotically stable point. 
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Finally, to understand of dynamical behavior at the 
coexistence equilibrium point 10E  the following set of 
hypothetical parameter values is chosen: 

9.0,5.0,7.0,037.0,08.0
,2.0,00019.0,1.0,88.0,48

2176

54321

=====

=−====

ττehh
hhhhh

             (29) 

As shown as in Fig.(10), the system(3) approaches 
asymptotically to the stable equilibrium 
point ( )077.0,018.0,309.0,013.010 =E . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. CONCLUSIONS AND DISCUSSION: 

The stability of model has been studied with linear 
functional response and numerical response. We propose 
only one model contain more than one model as 
following: 
First, we investigated that the vanishing equilibrium point 

( )0,0,0,00 =E  is always unstable, the conditions (10) for 
which the axial equilibrium point on the s -axis 

( )0,0,059.1,01 =E  is locally asymptotically stable but not 
globally, and axial equilibrium point on the p -axis 

( )0,0,0,02.02 =E  is locally asymptotically stable also it’s 
globally.  
Second, we have SI - epidemic model with the 
equilibrium point 3E , and show that 

( )018.2,0,295.0,03 =E  is locally asymptotically stable but 
not globally with conditions (12). 
Third, we have SIS - epidemic model with the equilibrium 
point 4E , and show that, in theorem (5), 

( )0,875.0,35.0,04 =E  is locally asymptotically stable but 
not globally. 
Fourth, we have prey-infected predator by SI  model with 
the equilibrium point 5E , and show that, in theorem (6), 

( )385.0,0,0,014.05 =E  is locally asymptotically stable but 
not globally. 
Fifth, we have prey-predator model with the equilibrium 
point 6E , and show that, in theorem (7), 

( )0,0,505.0,01.06 =E  is locally asymptotically stable but 
not globally. 

Sixth, we have prey-predator model with SIS -disease in 
predator, investigated the condition (16) for which the 
equilibrium point 7E is stable, and numerically show that 

( )0,046.0,344.0,013.07 =E  is locally asymptotically stable 
but not globally. 
Seventh, we have prey-predator model with SI -disease in 
predator, investigated the condition (17) for which the 
equilibrium point 8E is stable, and numerically show that 

( )342.0,0,332.0,013.08 =E  is locally asymptotically stable 
but not globally. 
Eighth, we have epidemic model spread two diseases the 
population, and investigated in the theorem (10) the 
equilibrium point 9E is stable, and numerically show that 

( )16.0,555.0,98.8,09 =E  is locally asymptotically stable 
but not globally. 
Finally, we investigated the condition (19) for which the 
coexistence equilibrium point 10E  is stable, more than, 
numerically prove that ( )077.0,018.0,309.0,013.010 =E  is 
locally asymptotically stable but not globally. In general, 
use the Lyapunov function to find the stability of the 
system (3) at each most of its equilibrium points. 
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